If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-6X-155=0
a = 1; b = -6; c = -155;
Δ = b2-4ac
Δ = -62-4·1·(-155)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-4\sqrt{41}}{2*1}=\frac{6-4\sqrt{41}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+4\sqrt{41}}{2*1}=\frac{6+4\sqrt{41}}{2} $
| 2x(2)+8x+12=0 | | r-4=6r+26 | | 16+4x=140 | | 3(y-3)=2(1-4y) | | -2x2+4×-67=0 | | 3g+g−–17=–19 | | 0=2x^2-13x-130 | | 2x^2-11x+130=0 | | 16x+32=14x+40 | | 36x+51=6x-9 | | 4(2y-7)+13=9 | | 3p+11=32 | | -2/3*x-9/4=0,8 | | 4(8x+5)=-33x-26 | | 44=20y | | z/12=4/5 | | x+10=4x-40 | | |x-1|+|x-4|=2 | | 6=12+(-2t) | | 3(7-2y)-2y=5 | | 3(7-2y)=5 | | 3(x+1)-5(x-1)=21 | | 2^x-9(2^x)+8=0 | | 3x+2(4)=6x+5 | | 6(4x-3)=3(8x+2) | | b/9 =14 | | (40-x)(x-5)=4(40-x) | | 2(q-15)=-12 | | x*x=676 | | 3+x2=x5 | | -2x2=-7x+17 | | 5p-3(p-3)=12-5p |